
Realistic Benchmarking of
DNS Resolver Cache Policies

Štěpán Balážik
2025-02-07

stepan@isc.org

mailto:stepan@isc.org

Caching is crucial for DNS resolver performance.

Most resolvers implement the LRU cache policy.

Can we do any better?

What does better mean? How do we test it?

2

High level overview

Agenda

- Caching in DNS and caching policies

- cache-test: DNS specific policy evaluation
toolchain

- Glimpse of results

3

What is a cache policy?

What records to save in the cache?

What record to throw out (evict) when the cache
is full?

4

Cache policy (Example: LRU)

What records to save in the cache?
All of them

What record to throw out (evict) when the cache
is full?

The one which has been Least Recently Used.

5

What’s a good policy?

Usually LRU with some domain [sic] specific
tweaks[1].

Usually you want to minimize the number of
cache misses.

6

[1] I read some papers. They were interesting but not relevant to DNS.

Misses* are not created equal

cache:
dns-oarc.net. NS ns1.dns-oarc.net.
ns1.dns-oarc.net. A 64.191.0.128

client query:
dns-oarc.net. A → resolver

resolver query:
dns-oarc.net. A → 64.191.0.128

cost = 1 (without DNSSEC)

7

*in recursive resolvers

Misses* are not created equal

cache: empty
client query:

dns-oarc.net. A → resolver

resolver query:
net. NS → a.root-servers.net.
dns-oarc.net. NS → a.root-servers.net.
dns-oarc.net. A → ns1.dns-oarc.net.

cost = 3 (without DNSSEC)

8

*in recursive resolvers

9cost > 9000, probably

How I evaluate the policies

Client-centric
number of needed queries ~ latency for the client

High-level
records and types, rather than bits and bytes

Real & reproducible
on real data, outside of the Internet

10

cache-test toolchain overview

1. Client queries in a PCAP → Unique requests

2. Unique requests → Authoritative data

3. Authoritative data → Simulation environment

4. (Policy, PCAP, Simulation env.) → Costs

11

1. Packet capture processing

Input:
PCAP of incoming DNS traffic to a resolver

Output:
list of unique [name, type] pairs

Implementation:
dnsjit script and uniq

12

2. Collecting authoritative data
Input:

list of unique [name, type] pairs from PCAP
Output:

all authoritative data needed to resolve them
Implementation:
dnsperf, Knot Resolver w/ custom module, sqlite

Limitations:
No RRSIGs, no NSEC*, SERVFAILs and retries

13

3. Preparing the environment
Input:

authoritative data on disk
Output:

objects in Python
Implementation:
dnspython

Limitations:
contd

14

3. Preparing the env. (contd)

The idea of zone from the resolver’s POV is fuzzy.

> load_zones()
Parsed 522720 zones, skipped 11780 empty zones
Imputed data:

SOA records fell back to parent 5799 times
Nameservers fell back to parent 2979 times
NS records in parent were synthesized 2503 times

15

4. Benchmarking the policies

This is where it all comes together:
a. Define a cache policy.

Two examples.
b. Deterministically calculate request costs.

c. Simulate the traffic.

16

4a. Defining the LRU policy

put(record):
if cache is full:

remove the first
record in cache.

store record at the
end of the cache.

17

peek(record):
if record not in cache:

return MISS.
if TTL of record expired:

delete record.
return MISS.

move record to the
end of the cache.
return HIT.

4a. Defining a different policy

put(record):
store record at the
end of the cache.
if cache is full:

remove first unimportant record in cache.
if there is none, remove first record.

important := NS, DS, DNSKEY or glue for a TLD

18

peek(record):
remains the same.

4b. Request cost calculation

19

Input:
current cache state, authoritative data, client request

Output:
cost of the request
altered cache state (with needed records added)

Caveat:
Server selection has to be derandomized.

4c. Simulating the traffic

20

cache, costs = {}
for query in PCAP:

cost, cache = request_cost(query, cache)
costs[query] = cost

Input:
list of client queries from the PCAP

Output:
cost of resolving each query

Results

Disclaimer:
These results are mostly illustrative and
a starting point to further research.

Main point of this presentation is the tooling.

21

Data

From a telco in Europe.

1,3B queries over the span of 1 hour ~ 360 kQPS.

4M unique queries.

8M authoritative records needed.

22

Policies

- LRU (size: 1M records)

- ImportantLRU (size: 1M records)

- Least Frequently Used (size: 1M records)

- Unbounded (as baseline)

23

24

25

0,001%

0,0001%

0,00001%

0,000001%

0,0000001%

0,00000001%

my code

Next steps
Optimize.

mfw python slow (gitlab.isc.org/stepan/cache-test)

Test on more kinds of traffic.
i showed you my slides, pls send PCAPs
(idea: mix legitimate traffic with synthetic attack traffic)

Test more policies.
established (DLRU, TWLRU) and new ones
(ideas? send them to stepan@isc.org)

26

http://gitlab.isc.org/stepan/cache-test
mailto:stepan@isc.org

