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Caching is crucial for DNS resolver performance.

Most resolvers implement the LRU cache policy.

Can we do any better? 

What does better mean? How do we test it?
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High level overview



Agenda

- Caching in DNS and caching policies

- cache-test: DNS specific policy evaluation 
toolchain

- Glimpse of results
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What is a cache policy?

What records to save in the cache?

What record to throw out (evict) when the cache 
is full?
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Cache policy (Example: LRU)

What records to save in the cache?
All of them

What record to throw out (evict) when the cache 
is full?

The one which has been Least Recently Used.
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What’s a good policy?

Usually LRU with some domain [sic] specific 
tweaks[1].

Usually you want to minimize the number of 
cache misses.
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[1] I read some papers. They were interesting but not relevant to DNS.



Misses* are not created equal

cache:
dns-oarc.net.     NS ns1.dns-oarc.net.
ns1.dns-oarc.net. A  64.191.0.128

client query:
dns-oarc.net. A → resolver

resolver query:
dns-oarc.net. A → 64.191.0.128

cost = 1 (without DNSSEC)
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*in recursive resolvers



Misses* are not created equal

cache: empty
client query:

dns-oarc.net. A → resolver

resolver query:
net.          NS → a.root-servers.net.
dns-oarc.net. NS → a.root-servers.net.
dns-oarc.net. A  → ns1.dns-oarc.net.

cost = 3 (without DNSSEC)
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*in recursive resolvers



9cost > 9000, probably



How I evaluate the policies

Client-centric
number of needed queries ~ latency for the client

High-level
records and types, rather than bits and bytes

Real & reproducible
on real data, outside of the Internet
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cache-test toolchain overview

1. Client queries in a PCAP → Unique requests

2. Unique requests → Authoritative data

3. Authoritative data → Simulation environment

4. (Policy, PCAP, Simulation env.) → Costs
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1. Packet capture processing

Input:
PCAP of incoming DNS traffic to a resolver

Output:
list of unique [name, type] pairs 

Implementation:
dnsjit script and uniq
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2. Collecting authoritative data
Input:

list of unique [name, type] pairs from PCAP
Output:

all authoritative data needed to resolve them
Implementation:
dnsperf, Knot Resolver w/ custom module, sqlite

Limitations:
No RRSIGs, no NSEC*, SERVFAILs and retries
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3. Preparing the environment
Input:

authoritative data on disk
Output:

objects in Python
Implementation:
dnspython

Limitations:
contd
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3. Preparing the env. (contd)

The idea of zone from the resolver’s POV is fuzzy.

> load_zones()
Parsed 522720 zones, skipped 11780 empty zones
Imputed data:

SOA records fell back to parent 5799 times
Nameservers fell back to parent 2979 times
NS records in parent were synthesized 2503 times
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4. Benchmarking the policies

This is where it all comes together:
a. Define a cache policy.

Two examples.
b. Deterministically calculate request costs.

c. Simulate the traffic.
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4a. Defining the LRU policy

put(record):
if cache is full:

remove the first
record in cache.

store record at the
end of the cache.
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peek(record):
if record not in cache:

return MISS.
if TTL of record expired:

delete record.
return MISS.

move record to the
end of the cache.
return HIT.



4a. Defining a different policy

put(record):
store record at the
end of the cache.
if cache is full:

remove first unimportant record in cache.
if there is none, remove first record.

important := NS, DS, DNSKEY or glue for a TLD
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peek(record):
remains the same.



4b. Request cost calculation
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Input:
current cache state, authoritative data, client request

Output:
cost of the request
altered cache state (with needed records added)

Caveat:
Server selection has to be derandomized.



4c. Simulating the traffic
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cache, costs = {}
for query in PCAP:

cost, cache = request_cost(query, cache)
costs[query] = cost

Input:
list of client queries from the PCAP

Output:
cost of resolving each query



Results

Disclaimer:
These results are mostly illustrative and
a starting point to further research.

Main point of this presentation is the tooling.
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Data

From a telco in Europe.

1,3B queries over the span of 1 hour ~ 360 kQPS.

4M unique queries.

8M authoritative records needed.
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Policies

- LRU (size: 1M records)

- ImportantLRU (size: 1M records)

- Least Frequently Used (size: 1M records)

- Unbounded (as baseline)
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my code

Next steps
Optimize.

mfw python slow (gitlab.isc.org/stepan/cache-test)

Test on more kinds of traffic.
i showed you my slides, pls send PCAPs
(idea: mix legitimate traffic with synthetic attack traffic)

Test more policies.
established (DLRU, TWLRU) and new ones
(ideas? send them to stepan@isc.org)
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