
All	content	©	Internet	Systems	Consortium,	Inc.

Thinking about Serve Stale
Cathy Almond
2025-02-06

https://www.isc.org

https://www.isc.org/

All	content	©	Internet	Systems	Consortium,	Inc.

What is Serve Stale anyway?
https://datatracker.ietf.org/doc/html/rfc8767
Serving Stale Data to Improve DNS Resiliency

2

https://datatracker.ietf.org/doc/html/rfc8767

All	content	©	Internet	Systems	Consortium,	Inc.

How might this work?
•How long do you want to keep ‘stale’ cache content?
•How long do you keep a client waiting before providing
a stale answer?
•How often do you try to refresh stale content?
•Should you give up eventually and stop serving stale
RRsets?
•Should you indicate to the client that the answer is old
data?

3

All	content	©	Internet	Systems	Consortium,	Inc.

RFC 8767 says:
Four notable timers drive considerations for the use of stale data:
•A client response timer, which is the maximum amount of time a
recursive resolver should allow between the receipt of a resolution
request and sending its response.
•A query resolution timer, which caps the total amount of time a
recursive resolver spends processing the query.
•A failure recheck timer, which limits the frequency at which a
failed lookup will be attempted again.
•A maximum stale timer, which caps the amount of time that
records will be kept past their expiration.

4

All	content	©	Internet	Systems	Consortium,	Inc.

RFC 8767 also talks about:
•What TTL should you put on a stale RRset?
•Should you ever serve stale RRsets that were originally
received with TTL=0 (‘don’t cache’)?
•Also use stale content in-path to getting the answers for
the client query (such as NS records and addresses?)
•Does receipt of a non-authoritative error (e.g. FORMERR,
SERVFAIL, REFUSED) count as a failed refresh?
•Can you signal that stale answers have been provided

5

All	content	©	Internet	Systems	Consortium,	Inc.

Phew! Let’s talk about actually using it!

Two main things for operators to consider when enabling
Serve Stale:
1. Cache - how long can/should you keep stale RRsets in

cache and will there be any memory consumption
implications of this for your server(s)

2. User experience - how long should clients wait before
being served with stale content, and how often should
they expect their resolver to attempt to refresh the old
content

6

All	content	©	Internet	Systems	Consortium,	Inc.

How to enable and configure Serve-Stale

What you need to think about and how to
configure Serve Stale in:
•BIND
•Unbound
•Knot Resolver
•PowerDNS Recursor

7

All	content	©	Internet	Systems	Consortium,	Inc.

Enabling Serve Stale in BIND
•Enable the stale cache (off by default in all currently supported versions):
stale-cache-enable yes;
•Configure how long to retain stale content (default 1 day):
max-stale-ttl 24H;
•Are you going to enable serving of stale answers now, or turn the feature
on/off when required?
stale-answer-enable yes;
or
rndc serve-stale on|off|reset
Note that you can’t enable stale answers without first starting BIND with
stale cache enabled - no stale cache means no stale answers available.

8

All	content	©	Internet	Systems	Consortium,	Inc.

(Optional) Configuring stale answers in BIND
These options are only effective when both stale-cache-enable and stale-answers-
enable are set to ‘yes’.
•Configure the TTL used for stale RRsets in query responses (default 30s):
stale-answer-ttl 30s;
•How long to serve stale before reattempting to refresh (default 30s):
stale-refresh-time 30s;
•How long do clients have to wait for a stale answer instead of the usual recursion
timeout and SERVFAIL?
stale-answer-client-timeout <duration>;
The duration above can be either zero (‘0’) or disabled/off (default off). Recursion
duration is controlled by option ‘resolver-query-timeout’, default 10s. ISC support
recommends not altering this!

9

All	content	©	Internet	Systems	Consortium,	Inc.

BIND and stale answers - be aware that:
•BIND’s cache content management strategy is two-fold. Opportunistic cache
cleaning means that in-passing, TTL-expired content is removed. To enable stale
cache, most RRsets that would otherwise be candidates for eviction, are now
retained (if possible) for the period max-stale-ttl. Therefore your cache memory
consumption may increase significantly, up to the point that memory-based (least
recently used) cache cleaning is triggered.
•Content received with TTL=0 is not retained for use in stale answers, unless option
min-cache-ttl has been used to override small or zero TTLs on received RRsets.
•NXDOMAIN RRsets are not retained for use in stale answers (this differs from
other implementations).
•BIND automatically adds EDE options 3 (Stale Answer) or 19 (Stale NXDOMAIN)
to query responses with stale content (although see above!).
•A SERVFAIL answer due to fetch-limits may instead be replaced with stale content
but doesn’t trigger stale-refresh-time.

10

All	content	©	Internet	Systems	Consortium,	Inc.

Enabling Serve Stale in Unbound
•Enable the serving of stale content (disabled by default):
serve-expired: yes
•Enable prefetch (to help keep popular cache up-to-date):
prefetch: yes
•How long do you want stale RRsets to continue to be used for serving stale
answers (default is all content is eligible indefinitely; recommendation is 1 day)?
serve-expired-ttl: 86400 # 1 day (in seconds)
•Decide whether or not you want automatic extension of use of expired stale RRsets
(default no)
serve-expired-ttl-reset: yes|no
This setting extends/resets the “use this stale until” timestamp added to stale
RRsets in cache when a refresh attempt fails. Without it, content is only used stale
until the limit specified in serve-expired-ttl.

11

All	content	©	Internet	Systems	Consortium,	Inc.

(Optional) Configuring stale answers in Unbound
•Configure the TTL used for stale RRsets in query responses (default 30s):
serve-expired-reply-ttl: 30 # 30 seconds (in seconds)
•How long do clients have to wait for a stale answer instead of the usual recursion
timeout and SERVFAIL?
serve-expired-client-timeout: 1800 #1.8 seconds (in
milliseconds)
The above example is deliberately just shorter than most client-side query
response timeouts of 2 seconds, but the default is zero - respond stale first and
attempt to refresh afterwards.
•Configure whether or not you want to send Extended DNS Errors (EDE) in query
responses containing stale RRsets:
ede: yes
ede-serve-expired: yes

12

All	content	©	Internet	Systems	Consortium,	Inc.

Unbound and stale answers - useful to know:
•Unbound’s cache content management strategy is based on eviction
of RRsets once cache memory limits are reached and on a Least
Recently Used (LRU) basis. Enabling Serve Stale therefore is
unlikely to change cache composition or memory consumption.
•Unbound has an additional back-end cache DB feature available
which may change how Serve Stale operates - see https://
unbound.docs.nlnetlabs.nl/en/latest/manpages/
unbound.conf.html#cache-db-module-options
•Content received with TTL=0 is not retained for use in stale answers
(because it is never added to cache) unless options cache-min-ttl
and/or cache-min-negative-ttl have been used to override small or
zero TTLs on received RRsets.

13

https://unbound.docs.nlnetlabs.nl/en/latest/manpages/unbound.conf.html#cache-db-module-options
https://unbound.docs.nlnetlabs.nl/en/latest/manpages/unbound.conf.html#cache-db-module-options
https://unbound.docs.nlnetlabs.nl/en/latest/manpages/unbound.conf.html#cache-db-module-options
https://unbound.docs.nlnetlabs.nl/en/latest/manpages/unbound.conf.html#cache-db-module-options
https://unbound.docs.nlnetlabs.nl/en/latest/manpages/unbound.conf.html#cache-db-module-options

All	content	©	Internet	Systems	Consortium,	Inc.

Unbound and stale answers - useful to know:
•There are no options to directly control how frequently Unbound
attempts to refresh stale content before using it again; client
queries will continue to use the stale content without initiating a
new refresh until 5 seconds have passed since the last failure.
•The client experience with serve-expired-ttl-reset: yes can vary
because although a failed refresh will reset the serve-expired-ttl
timer on the RRset, if that RRset was no longer eligible for stale
use before the refresh, it won’t be sent to the client until after
the refresh attempt has finished processing and has failed
(serve-expired-client-timeout isn’t used for non-eligible stale
content).

14

All	content	©	Internet	Systems	Consortium,	Inc.

Enabling Serve Stale in Knot Resolver
•Enable the serving of stale content (disabled by
default):
options:
serve-stale: true

This setting enables the use of stale RRsets in order to
avoid sending SERVFAIL when cache content can’t be
refreshed. They are usable for up to 24 hours after
TTL expiry. This stale validity period is not directly
configurable.

15

All	content	©	Internet	Systems	Consortium,	Inc.

(Optional) Configuring stale answers in Knot
Resolver
•Adjust how long to wait before retrying unreachable
servers (default 1000 ms):
cache:
ns-timeout: <time ms|s|m|h|d>

As long as as all nameservers are marked
unreachable and have been for less than ns-
timeout, clients will receive immediate stale
answers without an attempt to refresh first.

16

All	content	©	Internet	Systems	Consortium,	Inc.

Knot Resolver and stale answers - need to know:
•Knot Resolver’s cache content management strategy is based on eviction of
RRsets once cache memory limits are reached. Enabling serve-stale
therefore is unlikely to change cache composition or memory consumption.
•Stale RRsets are returned in query responses with a 1 second TTL.
•There is no directly-configurable client query/resolver timeout.
• It’s nevertheless possible to change some timers (e.g. .timeout
and .callback) by directly modifying the lua module: https://gitlab.nic.cz/knot/
knot-resolver/-/blob/master/modules/serve_stale/serve_stale.lua
•Content received with TTL=0 is eligible to be used in stale answers even if
Knot Resolver option cache/ttl-min (default 5s) is set to zero.
•Knot Resolver (version 6 and up) automatically adds EDE options 3 or 19 to
query responses with stale content.

17

https://gitlab.nic.cz/knot/knot-resolver/-/blob/master/modules/serve_stale/serve_stale.lua
https://gitlab.nic.cz/knot/knot-resolver/-/blob/master/modules/serve_stale/serve_stale.lua
https://gitlab.nic.cz/knot/knot-resolver/-/blob/master/modules/serve_stale/serve_stale.lua

All	content	©	Internet	Systems	Consortium,	Inc.

Enabling Serve Stale in PowerDNS Recursor
•Enable the serving of stale content (disabled by default) by choosing how
many times to reset a stale RRset’s TTL in the configuration or command
line:
serve-stale-extensions <count>
This setting defines how many times a stale RRset can be ‘revived’ in
cache by giving it a TTL that is the smaller of 30s or the original TTL of the
RRset.
The ‘revival’ only happens after the RRset refresh attempt fails.
The ‘revival’ mechanism takes into account how long ago the last
extension was done when doing a new extension. RRsets that are only
queried once in a while get the same maximum stale period as compared
with RRsets queried very frequently (assuming original TTL>= 30s).

18

All	content	©	Internet	Systems	Consortium,	Inc.

PowerDNS and stale answers - useful to know:
•PowerDNS Recursor’s cache content management strategy is based both on
eviction of expired content and on eviction of RRsets based on LRU once cache
memory limits are reached. Enabling Serve Stale defers eviction of expired
content until serve-stale-extensions x 30s. Therefore your cache memory
consumption will increase and there may be more LRU cleaning occurring.
•Content received with TTL=0 is eligible to be used in stale answers even if
PowerDNS Recursor option minimum-ttl-override (default 1s) is set to zero.
•There is no specific configurable timer for how long to wait for on a refresh
attempt before serving stale content; the time to wait is the same, irrespective of
whether PowerDNS would respond with SERVFAIL or use stale RRsets.
•The TTL on RRsets used stale is 30s or less, and counts down in cache in the
same way as the original RRset’s TTL would have done.
•PowerDNS does not (yet) add EDE options to query responses with stale content,
but this is planned as a future feature.

19

All	content	©	Internet	Systems	Consortium,	Inc.

Other resolver implementations exist, for
example:
•Appliances that use Open Source DNS ‘inside the box’ will
almost certainly enable Serve Stale and provide some
configuration options.
•Akamai DNS has a switch (default ‘on’) for serving stale content
- it is an extension to prefetch functionality for ‘popular’ content
•Cloud-based resolver solutions appear to implement some
types of ‘failure mode’ recovery, and this probably includes
serving of stale content (disclaimer - I have not researched this!)

20

All	content	©	Internet	Systems	Consortium,	Inc.

Not covered in this presentation…
•Logging and statistics (mostly included in software providers’
documentation).
•Serve Stale in relation to DNSSEC validation failures and stale DNSSEC
material.
•Use of stale cache data when following intermediate referrals.
•Expired cache containing both CNAME/DNAME and other records for the
same name (due to different query responses at different times).
• “Fail” responses (as opposed to failure to respond by authoritative servers) -
which of these trigger Serve Stale?
It’s reasonable to assume that the software implementations handle all of
the above sanely - but if you need to know - ask your software provider!

21

All	content	©	Internet	Systems	Consortium,	Inc.

A challenge!
• Is the Serve Stale feature genuinely useful?
•Do operators of resolvers know for certain that it is helping their servers?
• I have never yet heard of a situation where having Serve Stale enabled
‘saved the day’ - but would love to hear from anyone who has one!
•One ‘useful’ that is perhaps passing under the radar might be that
resolvers are ‘smoothing over’ short term authoritative server
unavailability or slowdowns. Would we even know that this is happening?
•What do we think about ‘serve stale content first, refresh afterwards’
(available in some implementations) - and does that count as ‘useful'?
•Analysis of Resolver logging and statistics from servers in production
environments might be the starting point for an assessment of the
practical benefits of the Serve Stale feature - a talk for OARC45?

22

All	content	©	Internet	Systems	Consortium,	Inc.

Discussion time …

23

Photo	by	Vincent	van	Zeijst	via	Wikimedia	Commons

RFC	8767:	“Stale	bread	is	better	
than	no	bread.”

https://commons.wikimedia.org/wiki/File:Slice_of_bread_with_mould_(1).jpg

All	content	©	Internet	Systems	Consortium,	Inc.

References:
•https://kb.isc.org/docs/serve-stale-implementation-details
•https://kb.isc.org/docs/changes-to-serve-stale-option-stale-answer-client-timeout-
in-bind-918-and-newer
•https://unbound.docs.nlnetlabs.nl/en/latest/topics/core/serve-stale.html#serving-
stale-data
•https://blog.nlnetlabs.nl/some-country-for-old-men/
•https://websites.pages.nic.cz/knot-resolver.cz/documentation/v5.7.4/modules-
serve_stale.html
•https://www.knot-resolver.cz/documentation/latest/config-serve-stale.html
•https://gitlab.nic.cz/knot/knot-resolver/-/blob/master/modules/serve_stale/
serve_stale.lua
•https://docs.powerdns.com/recursor/appendices/internals.html#serve-stale
•https://docs.powerdns.com/recursor/settings.html#

24

https://kb.isc.org/docs/serve-stale-implementation-details
https://kb.isc.org/docs/changes-to-serve-stale-option-stale-answer-client-timeout-in-bind-918-and-newer
https://kb.isc.org/docs/changes-to-serve-stale-option-stale-answer-client-timeout-in-bind-918-and-newer
https://unbound.docs.nlnetlabs.nl/en/latest/topics/core/serve-stale.html#serving-stale-data
https://unbound.docs.nlnetlabs.nl/en/latest/topics/core/serve-stale.html#serving-stale-data
https://blog.nlnetlabs.nl/some-country-for-old-men/
https://websites.pages.nic.cz/knot-resolver.cz/documentation/v5.7.4/modules-serve_stale.html
https://websites.pages.nic.cz/knot-resolver.cz/documentation/v5.7.4/modules-serve_stale.html
https://www.knot-resolver.cz/documentation/latest/config-serve-stale.html
https://gitlab.nic.cz/knot/knot-resolver/-/blob/master/modules/serve_stale/serve_stale.lua
https://gitlab.nic.cz/knot/knot-resolver/-/blob/master/modules/serve_stale/serve_stale.lua
https://docs.powerdns.com/recursor/appendices/internals.html#serve-stale
https://docs.powerdns.com/recursor/settings.html#

All	content	©	Internet	Systems	Consortium,	Inc.

Thanks to:
•Wouter Wijngaards and Yorgos Thessalonikefs from NLnet Labs for
detailed information about Unbound's Serve Stale implementation
•Vladimir Cunat of CZ.NIC for explaining what happens with the different
configuration options in Knot Resolver
•Otto Moerbeek at PowerDNS for disentangling in my mind the different
approach taken to Serve Stale by PowerDNS Recursor

25

Also acknowledging the royalty-free image creators contributing to
slide 2:
• clickschool of Pixabay
• Megan Rexazin Conde of Pixabay
• GraphicMama-team of Pixabay
• Yayamamo of Wikimedia Commons

https://pixabay.com/users/clickschool-20359891/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=6035975
https://pixabay.com/
https://pixabay.com/users/megan_rexazin_conde-6742250/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=6063329
https://pixabay.com/
https://pixabay.com/users/graphicmama-team-2641041/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1459220
https://pixabay.com/
https://commons.wikimedia.org/wiki/User:Yayamamo
https://commons.wikimedia.org/wiki/File:201603_server_black.png

All	content	©	Internet	Systems	Consortium,	Inc.

Thank you for listening.

• ISC main website: https://www.isc.org
•Software downloads: https://www.isc.org/
download or https://downloads.isc.org
•Presentations: https://www.isc.org/
presentations
•Main GitLab: https://gitlab.isc.org

26

https://www.isc.org/
https://www.isc.org/download
https://www.isc.org/download
https://www.isc.org/download
https://www.isc.org/download
https://www.isc.org/download
https://www.isc.org/download
https://downloads.isc.org/
https://www.isc.org/presentations
https://www.isc.org/presentations
https://www.isc.org/presentations
https://www.isc.org/presentations
https://www.isc.org/presentations
https://www.isc.org/presentations
https://gitlab.isc.org/

